Telegram Group & Telegram Channel
Почему логистическая регрессия не подвержена переобучению так же сильно, как деревья решений или нейросети

Логистическая регрессия — это линейная модель, и ее склонность к переобучению значительно ниже, чем у более гибких моделей, таких как decision trees или нейросети. Вот почему:

1. Ограниченная сложность модели

Логистическая регрессия линейно разделяет пространство признаков, что ограничивает ее гипотезы (модельное семейство). Это значит, что она имеет высокое смещение (bias), но низкую дисперсию (variance). Переобучение обычно связано с высокой дисперсией, которой у линейной модели меньше.

2. Малая VC-дименсия

В отличие от деревьев решений, которые могут запомнить структуру обучающей выборки почти целиком, логистическая регрессия имеет гораздо более низкую VC-дименсию, а значит — меньше риск выучить шум.

3. Регуляризация встроена естественным образом

В логистическую регрессию часто добавляют L1 или L2 регуляризацию (например, через параметр C в `sklearn`). Это сдерживает веса модели и предотвращает переобучение.

4. Обучение через оптимизацию функции правдоподобия

Вместо того чтобы искать сложные деревья или веса, как в нейросетях, логистическая регрессия решает выпуклую задачу оптимизации. Это делает процесс более стабильным и предсказуемым.

🔍 Но важно: логистическая регрессия может переобучиться при высокой размерности данных (особенно если признаков больше, чем наблюдений), или при наличии коррелированных и нерелевантных признаков — в этих случаях регуляризация обязательно нужна.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/955
Create:
Last Update:

Почему логистическая регрессия не подвержена переобучению так же сильно, как деревья решений или нейросети

Логистическая регрессия — это линейная модель, и ее склонность к переобучению значительно ниже, чем у более гибких моделей, таких как decision trees или нейросети. Вот почему:

1. Ограниченная сложность модели

Логистическая регрессия линейно разделяет пространство признаков, что ограничивает ее гипотезы (модельное семейство). Это значит, что она имеет высокое смещение (bias), но низкую дисперсию (variance). Переобучение обычно связано с высокой дисперсией, которой у линейной модели меньше.

2. Малая VC-дименсия

В отличие от деревьев решений, которые могут запомнить структуру обучающей выборки почти целиком, логистическая регрессия имеет гораздо более низкую VC-дименсию, а значит — меньше риск выучить шум.

3. Регуляризация встроена естественным образом

В логистическую регрессию часто добавляют L1 или L2 регуляризацию (например, через параметр C в `sklearn`). Это сдерживает веса модели и предотвращает переобучение.

4. Обучение через оптимизацию функции правдоподобия

Вместо того чтобы искать сложные деревья или веса, как в нейросетях, логистическая регрессия решает выпуклую задачу оптимизации. Это делает процесс более стабильным и предсказуемым.

🔍 Но важно: логистическая регрессия может переобучиться при высокой размерности данных (особенно если признаков больше, чем наблюдений), или при наличии коррелированных и нерелевантных признаков — в этих случаях регуляризация обязательно нужна.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/955

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA